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Abstract

In this exercise, we will discuss quantum entanglement in an intuitionistic context
and its evolution. This requires a definition of the tensor product, as well as the
introduction of a Hamiltonian.
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1 Introduction

In a previous article [1], we defined a notion of probability for finite Heyting algebras.
These algebras can be embedded in a Hilbert space in order to deal with the non-
commutativity of quantum measurement.

This embedding allows us to introduce a Hamilton operator and study the temporal
evolution of entanglement in a tensor algebra.

2 Ingredients

Let $ be a finite Heyting algebra. We denote G the inclusion of its spectrum in itself
via the infima of its prime filters [2].

A probability on § is first defined as a classical probability m on G, then extended
to $ by pu(a) = 3_ <, m(g)- It is useful to introduce the order matrix OF = x(1 4)(g) on
G x $. By making p and 7 line vectors, we will have p, = 7,09 with Einstein’s sum-
mation convention. We show that the restriction of this matrix to G x G is invertible,
which allows us to obtain 7 from p.



An observable Ob will be an embedding of $ into a Hilbert space H in the following
manner. Each element g € G is associated with an orthogonal projector By such that
the set (By)geq forms a partition of the identity of 7. We then have

> By =1d,ByBy = 6,9 B,
g
For each element a € §), we construct the orthogonal projector J, = B,09. We
then note that Jovp = Jo + Jp — Jodb, Jave = Jo + Jp — Jodp, J1 = 0 and JT =1d. If
$ is not a Boolean algebra, we will generally not have J_, = J-.

The probability on $ will be obtained by a quantum amplitude ¢, a unit vector
of H, by calculating the matrix products:

m(9) =¥ Bgy  p(a) = ¢ T

An observable Ob is characterized by its observable values given by an injective
application' v : G — R. This gives us the standard quantum model using Hermitian
operators

Ob = Bgv?

A projector J, then represents a quantum measurement, which is simply a question
relating to the spectrum [3]. Since a = \/ggag, this question is expressed as a? =
Will the value of the observable appear in the set g < a ? . If the state of the system
is 1, the Copenhagen school tells us that the answer will be yes with a probability
= YT Jp, that the state will evolve towards Ja/\/1t, and that the answer will be
no with a probability 1 — p and a resulting state Jv//T — p.

A yes answer validates a. But since the algebra is only Heyting, a no answer doesn’t
necessarily validate —a. We will see below that it is nevertheless possible to validate
another proposition.

Furthermore, not all questions relating to the spectrum (the set of its parts) can be
asked. Since G is equipped with an order that is generally not completely disconnected,
a yes answer to g7 validates all ¢’ > g. If there is an ¢’ > g, there can be no answer
to the question Is the value of the observable exactly equal to g ¢

The order placed on the spectrum has, a priori, nothing to do with the order of
observable values, which is that of the real numbers. It reflects a certain fuzziness on
these values through the application of Birkhoff’s representation theorem [4].

The advantage of this formalism is that it allows different algebras to coexist. The
set of projectors induces a unitary embedding operator for each observable. In partic-
ular, the values of the observables can evolve over time by introducing a Hamiltonian
on the space.

The evolution chosen here will be that of Schroedinger [5]: 1 (t) = e~*& ¥(0)

I Multiple eigenvalues are taken into account by the traces of the basic projectors



3 Tensor product

3.1 Definition and inclusions

Let $5, s € S be a set of Heyting algebras, called local. The tensor product $ = ®,9;
is the algebra generated by the product spectrum:

G =[], G, equipped with the order (gs)s < (g5)s <= Vs.9s < g-
This algebra, called global, is canonically constituted by the antichains of G.

The projectors associated with the tensor algebra will be
Jo=B; 0% gcGacHh
We have canonical inclusions defined by i; : s — $

is(a) = sup{g € H|Vs.gs < a}
These inclusions define subsystems J; = J;_(q),a € 9.

These subsystems are subalgebras of $. We can therefore solve for B; the system
JS = B;Ojﬁzggg,g € Gy,a € H,

It is worth noting that B; # B, (y)- The B; are generally not even in the algebra
of the tensor.

3.2 Pure global states

Suppose that we choose a question a,? in each local algebra $,. Let us consider the
projector J prep =[], Ji,(a,)> which we can call ®:J;_(4,) and which also happens to

be /\S Jis(as)'

If the global system is in the original state v, the state Jprept/ || prep®|| is the one
we would obtain if all the answers to the local questions were positive. This resulting
state, which appears with probability pprep =[], wTJis(as)w, will be called pure?.

4 Validation of negative responses

We have seen that a positive response to a question a? validates a in the sense that the
resulting state will definitely answer yes, since it is then in the image of J, (provided
we do not wait too long ...).

If the answer is no, the system then finds itself in the image of Id — J, which
may well not correspond to any proposition. Nevertheless, it is possible to obtain an
optimum.

2These states can be obtained by rejection. Since the number of subsystems is finite, the waiting times
are almost surely finite.



Proposition

—°Pq is the minimal proposition that is validated by J;-.

Demo

In the finite case, the opposite lattice is also a Heyting algebra, so we have:
Sy=>Jte= N >Id—J, = J(Id—J,) =1d— J, =

Jy+Jo—Jdapp =Ild <= Jyyp =1Id <= aVb=T

Butavb=T <= b > —q.

A no answer to the question a? validates any proposition implied by —°P.

ged

Remarks

If the algebra is Boolean, we have —°P = —.

We always have —=°Pa > —a, because

=PaVa=T= (=PaVa)\-a=-a=-"aA-a

5 Study of a specific case of entanglement

Consider the following experiment.

Two observers, A and B, are in the presence of a two-qubit entanglement [6].
The algebra of this system is the tensor product of two Boolean algebras with four
elements:

H={Ll,a,~a T} {L b-bT}
This gives a Boolean algebra with 16 elements fig. 1.
From an original state v, chosen at random, we prepare the initial state with the
projector:
Jprep = Ja ® Jb + Jﬁa (%9 Jﬁb

The interesting questions that A can ask are J, or J-,, which we will denote
JS,e = T, L. Similarly, B can ask J;'. Suppose that A asks the question a? for the
prepared state Yprep = Jprep®/ || Jprep®||. If the answer is yes, then J, remains for B,
and if it is no, then J_; remains for B.

Symmetrically, for b? asked by B. The answers are therefore initially completely
correlated.

A travels through space undergoing numerous accelerations, while B remains
on Earth fig. 2. The gravitational effects of general relativity will shift the clocks,



but we assume that if one of the observers measures their subsystem, the quantum
repercussion occurs at the same proper time for the other observer.

We see that the action of A influences the state of B and vice versa, immediately
in the sense of equal proper times.

A therefore asks the question a? at its proper time 74, and B asks the question b7
at its proper time 75. When they meet again (R), they communicate their answers to
each other A” after the last measurement.

Two cases must be distinguished: 74 < 75 and 74 > 75

In the fig. 2 and formulas below, we have denoted by 7 the action of the time
cHT
propagator e * "R .

For example, in the case 74 < 7p, the probability of responses for A is given by

Pra(a? =e,b? = n) =}, ThIEATTI AT A A TS Tt prey

which reduces to

P?"A(a? = E,b? = ) = TAJEATJWAJ TA"/}prep

wp'r‘ep

For the observer B, we obtain

Prp(a? =e,b? =) = ¢} ThIEALTIST AT AT S T AT AT A% pres
which reduces to the same expression as that of A, which is reassuring.

We note that the time-shift due to general relativity and the final delay do not
come into play.

The calculation cannot be simplified further because the questions do not commute
with the Hamiltonian.

The graphs fig. 3 show the evolution of the conditional probability as a function
of measurement times for a Hamiltonian of average energy 2 keV.

The diagrams are digitized temporally by 200 steps of 1.25, 2.5, and 5e-20 s.

5.1 Analysis

The correlation initially decreases as a function of the time difference, then becomes
periodic. There is indeed a decoherence effect.

The graph is not symmetrical, but the conditional probability is continuous,
including on the diagonal 74 = 75.

The derivatives on this diagonal are not continuous, but are expressed by

commutators.

dPTA

5 <7/1prep|7_JA [H JB}JAT|wprep>



dPTB )
7 = <11/}PT8}7‘TJB£[H7 JA]JBT‘prep>

This result is consistent with the fact that time derivatives can be expressed by
commutators with the Hamiltonian.

6 Conclusion

Quantum entanglement can easily be generalized to non-Boolean observables.

The famous spooky action at a distance mentioned by FEinstein can be interpreted
as a concordance of the proper times of the two subsystems. We can see that time
shifts have no influence on the probabilities and correlations of quantum responses.

Negative responses validate the negations of the opposite algebra.
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Fig. 2: Trajectories of observers A and B
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Fig. 3: Evolution of conditional intricated probabilities
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