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1 Introduction

Let us consider a finite set of n situations that may occur according to a distribution (pk)
n−1
k=0 .

The probability of each situation is generally determined by repeating the experiment indepen-
dently and using Laplace’s operational definition to obtain the estimators

p̂k =
Number of occurrences of situation k

Number of repetitions of the experiment

In addition, the central limit theorem provides an estimate of the difference between the true
value and the estimate [1].

This empirical method generally works quite well, but poses a few problems. On the one hand,
this estimator and its uncertainty depend on the number of repetitions, giving good results only
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when this number is sufficiently large, which is a rather vague concept. On the other hand, it is
difficult to generalize this definition when the observation of the situation is unclear. However,
a situation is often determined using a measuring instrument that produces a noisy result.

The aim of this work is to base the estimation of probabilities associated with events on
Bayes’ theorem, starting from Jeffreys’ non-informative priors.

2 Ingredients

2.1 Elements of Bayesian theory of statistical decision-making

This theory first distinguishes between two spaces: the space of states θ and the space of
observations x [3]. Each observation is assumed to be made in the presence of an unknown
state. The measurement model is the stochastic relation linking the state to the result of the
measurement. For a given state, we give a transition probability1 p(x | θ), which gives the
distribution of observations x given θ. Given an a priori distribution p(θ) over states and an
observation x, Bayes’ theorem gives the a posteriori distribution over states

p(θ | x) = p(x | θ)p(θ)∫
dθp(x | θ)p(θ)

When the state space is a differentiable manifold and the measurement model is twice differen-
tiable with respect to θ, we define a prior distribution called Jeffreys’ prior as follows [2]. First,
we form the Fisher information matrix

Iij(θ) = −
∫
dxp(x | θ)∂

2 ln p(x | θ)
∂θi∂θj

Jeffreys’ prior is then defined as

pJ(θ)dθ =
√
det I(θ)dθ

A fundamental property of this distribution is its invariance. Indeed, it can be shown that
pJ(θ)dθ does not depend on the choice of coordinate system.

2.2 Hyperspheres

The estimators constructed in this work make use of unit hyperspheres. Let us recall some
of their properties [4].

In Euclidean space Rn, the unit hypersphere of dimension n−1 is the differentiable manifold

Sn−1 = {ψ ∈ Rn |
∑
k

ψ2
k = 1}

The use of the letter ψ will be justified below. The usual spherical coordinates are given by

ψ0 = sin θn−2 sin θn−3 . . . sin θ1 sin θ0

ψ1 = sin θn−2 sin θn−3 . . . sin θ1 cos θ0

ψ2 = sin θn−2 sin θn−3 . . . cos θ1

. . .

ψn−1 = cos θn−2 (1)
1The use of the Roman font p will denote a generic probability, the underlying spaces being identifiable by the

variables used.
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and the normalized invariant measure under SO(n) is given by

dµ(ψ) =
1

An−1
sinn−2 θn−2 sin

n−3 θn−3 . . . sin θ1dθ0dθ1 . . . dθn−2 (2)

An−1 =
2πn/2

Γ(n/2)
(3)

Γ(1/2) =
√
π (4)

Let m = (m0 . . .mn−1) be a sequence of positive integers. The even moments relative to this
measure are given by

H(m) =

∫
ψ2m0
0 . . . ψ

2mn−1

n−1 dµ(ψ) (5)

We can show that the function H above is a generalization of the beta function

H(m) =
Γ(n/2)

πn/2

∏
k Γ(mk + 1/2)

Γ(
∑

k(mk + 1/2))
(6)

The normalization factor is chosen so that H(0) = 1

3 Probability estimators for known situations

The problem is estimating a distribution pk. This distribution can be viewed as a point in
the n− 1 dimensional simplex

∆n−1 = {p | 0 ⩽ pk ⩽ 1,
∑
k

pk = 1}

This simplex will be the state space for a measurement model whose observations are situa-
tions. In a canonical way, the probability of obtaining situation k given that the distribution is
p is obviously

p(k | p) = pk

This canonical measurement model is twice differentiable with respect to p. We can there-
fore calculate the associated Jeffreys prior pJ(p). It was stated above that this distribution is
independent of the parameterization of the simplex. Let us choose the new coordinates

ψk =
√
pk (7)

Since
∑

k ψ
2
k =

∑
k pk = 1, we obtain a measure model on a state space that is the positive part

of the hypersphere Sn−1

p(k | ψ) = ψ2
k

Now, it turns out that Jeffreys’ prior for this model is the invariant measure µ mentioned
above:

dpJ(ψ) = dµ(ψ) (8)

This result allows us to apply Bayes’ theorem to a sequence of independent observations. Let

i = (i0 . . . it−1)
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be such a sequence of length t, we obtain the posterior on the sphere Sn−1 given i

dp(ψ | i) =
ψ2
i0
. . . ψ2

it−1
dµ(ψ)∫

ψ2
i0
. . . ψ2

it−1
dµ(ψ)

(9)

Introducing the function m giving the multiplicity of an index k in the sequence i:

m(i)k = Card{s | is = k}

we obtain (implying the sequence i to simplify the notation)

dp(ψ | i) =
∏

k ψ
2mk
k dµ(ψ)

H(m(i))
(10)

The probability of occurrence of a situation k can be estimated by the posterior mean,

p̂k = E(pk) =
∫
ψ2
kψ

2
i0
. . . ψ2

it−1
dµ(ψ)

H(m(i))
(11)

The associated uncertainties will be given by the covariance matrix

p̂kpl = E(pkpl) =
∫
ψ2
kψ

2
l ψ

2
i0
. . . ψ2

it−1
dµ(ψ)

H(m(i))
(12)

Let us define ek as a sequence of integers that is zero except for the kth, whose value is 1. It is
easy to see that

p̂k =
H(m(i) + ek)

H(m(i))
(13)

p̂kpk =
H(m(i) + ek + el)

H(m(i))
(14)

The fact that
∑

hmh = t and the properties of the Gamma function [5] immediately give

p̂k =
mk + 1/2

t+ n/2
(15)

p̂2k =
(mk + 1/2)(mk + 3/2)

(t+ n/2)(t+ n/2 + 1)
(16)

p̂kpl =
(mk + 1/2)(ml + 1/2)

(t+ n/2)(t+ n/2 + 1)
(17)

4 Self-consistent random sequences

Let i be a sequence of length t− 1. Equation (15) therefore gives the Bayesian estimates for
the pk if we have observed the sequence i, which we will also denote by

p̂k = pJ(k | it−2, it−3 . . . i0)

At t, let us randomly draw a new situation it−1 according to these pk. Let us form a new
sequence by concatenation: (i, it−1). Nothing prevents us from repeating the process for this
new sequence.

We say that a sequence i is constructed in a self-consistent manner if
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• i0 is drawn uniformly from the n situations

• at each step, is−1 is drawn according to the probability pJ(k | is−2 . . . i0)

We note that the probability of obtaining a sequence i = (i0 . . . it−1) in this way is

pac(i) = pJ(it−1 | it−2 . . . i0)pJ(it−2 | it−3 . . . i0) . . . pJ(i1 | i0)pJ(i0) (18)

Now, it turns out that this probability is given by the function H ◦m

pac(i) = H(m(i)) (19)

Since no additional assumptions are made, we will call the probability pac a priori (non-
informative) self-consistent on sequences i of given length t. Sampling according to this
prior will be useful later for estimation in uncertain situations.

Note This way of generating a random sequence of numbers provides a possible answer to the
question: Given a sequence, what is its probability of occurrence? It can be easily seen that the
sequences with maximum self-consistent probability are also those with minimum entropy.

Incidentally, for sequences of given length t, we have∑
i

H(m(i)) = 1

From relations (18) and (19), we also have

H(m(i) + ek) = pJ(k | i)H(m(i)) (20)
H(m(i) + ek + el) = pJ(k | i)pJ(l | (i, k))H(m(i)) (21)

5 Generalization to fuzzy situations

In reality, situations are often measured by noisy instruments. Instead of knowing the sit-
uation at a stage s, the observer only has a measurement result x from a measurement model
p(x | k). For a given x, this vector, whose indices are the situations, is often called the likelihood
function. For a sequence of steps s = 0 . . . t−1, the observations2 (x0 . . . xt−1) give a likelihood
matrix whose time is the row index and the situation is the column index

ℓs(k) = p(xs | k) (22)

Let’s return to the situation on the hypersphere. Suppose that at time s, the prior probability
on Sn−1 is dηs(ψ). The appearance of a result xs for the measurement model p(x | k), combined
with the canonical model p(k | ψ) = ψ2

k, gives, by Bayes’ theorem, an a posteriori that will be
taken as a priori in the next step:

dηs+1(ψ) =

∑
k ℓ

s(k)ψ2
kdηs(ψ)∑

k ℓ
s(k)

∫
ψ2
kdηs(ψ)

(23)

2The measurement model may vary at each step.
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We can therefore write

dηt(ψ) =

∑
i ℓ

0(i0) . . . ℓ
t−1(it−1)ψ

2
i0
. . . ψ2

it−1
dµ(ψ)∑

i ℓ
0(i0) . . . ℓt−1(it−1)

∫
ψ2
i0
. . . ψ2

it−1
dµ(ψ)

(24)

Let
ℓ(i) =

∏
s

ℓs(is)

and use the definition of the function H to obtain the estimators at t− 1

E(pk) =

∑
i ℓ(i)H(m(i) + ek)∑

i ℓ(i)H(m(i))
(25)

E(pkpl) =

∑
i ℓ(i)H(m(i) + ek + el)∑

i ℓ(i)H(m(i))
(26)

which can also be written as

E(pk) =

∑
i pJ(k | i)ℓ(i)H(m(i))∑

i ℓ(i)H(m(i))
(27)

E(pkpl) =

∑
i pJ(k | i)pJ(l | (i, k))ℓ(i)H(m(i))∑

i ℓ(i)H(m(i))
(28)

The preceding equations suggest a new use for Bayes’ theorem. Indeed, given the self-consistent
prior pac on sequences of length t and the product measure model giving the likelihood function
ℓ, we can form the posterior on the sequences

pac(i | ℓ) =
ℓ(i)pac(i)∑
j ℓ(j)pac(j)

(29)

and we obtain

E(pk) =
∑
i

pJ(k | i)pac(i | ℓ) (30)

E(pkpl) =
∑
i

pJ(k | i)pJ(l | (i, k))pac(i | ℓ) (31)

Equations (30) and (31) are integrals that can be calculated using Monte Carlo. It is possible to
sample the posterior pac(i | ℓ) as follows:

• draw i0 according to the weights ℓ0(k)

• draw i1 according to the weights ℓ1(k)pJ(k | i0)

• . . .

• draw it−1 according to the weights ℓt−1(k)pJ(k | it−2 . . . i0)

A sample of r sequences is of this type gives the MC estimators

Ê(pk) =
1

r

∑
s

pJ(k | is) (32)

Ê(pkpl) =
1

r

∑
s

pJ(k | is)pJ(l | (is, k)) (33)
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as well as MC uncertainties

uE(pk) =
1√
r

√
1

r

∑
s

pJ(k | is)2 − Ê(pk)
2

(34)

uE(pkpl) =
1√
r

√
1

r

∑
s

pJ(k | is)2pJ(l | (is, l))2 − Ê(pkpl)
2

(35)

Note Simulating this sampling is very easy, for example in C++, and gives excellent results
for likelihood matrices with 3 situations and 10,000 observation times with an r of around one
million. The advantage of sampling on the posterior is that it directly locates the sequences that
contribute significantly to the overall sum. Recall that the sums (30) and (31) contain nt terms.

6 Conclusion

Replacing pk with ψk =
√
pk makes Jeffreys’ prior uniform. In general, probabilistic quantities

can be parameterized by the square root, which is their natural expression. This phenomenon is
found in quantum mechanics [6], where probability is expressed as the square of the modulus of
a wave function, hence the choice of the Greek letter ψ for the points of the hypersphere.

The generalization of beta functions given by the function H bridges the gap between con-
tinuous calculus on wave functions and sums over sequences, which are computable by MC.

An application of this work is under development for stationary Markov processes.

7 Summary

7.1 Seen by ψ ∈ Sn−1

dη0(ψ) = dµ(ψ) invariant (36)

dηt(ψ) = dηt−1(ψ | ℓt−1) =

∑
k ℓ

t−1(k)ψ2
kdη

t−1(ψ)∑
k ℓ

t−1(k)
∫
ψ2
kdη

t−1(ψ)
(37)

Et(pk | ℓ) =

∫
ψ2
kdη

t(ψ) (38)

Et(pkpl | ℓ) =

∫
ψ2
kψ

2
l dη

t(ψ) (39)
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7.2 Seen by i ∈ {0 . . . n− 1}N

it = (i0 . . . it−1) (40)
ptac(i) = pJ(it−1 | it−1)pt−1

ac (i) (41)

ℓt(i) =

t−1∏
s=0

ℓs(is) (42)

ptac(i | ℓ) =
ℓt(i)ptac(i)∑
it ℓ

t(i)ptac(i)
(43)

Et(pk | ℓ) =
∑
it

pJ(k | it)ptac(i | ℓ) (44)

Et(pkpl | ℓ) =
∑
it

pJ(l | itk)pJ(k | it)ptac(i | ℓ) (45)
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